职业培训教育网

2017年国家公务员考试网上辅导火爆热招中
报名、查分信息【免费】短信提醒服务
职业培训教育网荣获“十大网络教育机构”
高清课件、手机移动课堂全新体验
您的位置:职业培训教育网  > 公务员 > 公务员学习资料 > 公务员行测 > 公务员数量关系 正文

公务员备考训练:数学运算的复习

2008-08-04 14:04  来源:       我要纠错 | 打印 | 收藏 | | |

  数学运算主要涉及到以下几个问题:比例问题,不定方程,抽屉问题,倒推法问题,方阵问题,工程问题,和倍差问题,利润问题,年龄问题,牛吃草问题,浓度问题,平均数,数的拆分,数的整除性,速算与巧算,提取公因式法,统筹问题,尾数计算法,行程问题,植树问题,最小公倍数和最大公约数问题等等。以上都是在不断作题过程中总结出来的规律,在复习过程中,分点复习会有条理,不会遗漏,可以使自己的知识形成系统,在以后的作题中思路会更加清晰,下面是有关行程问题的一些总结。

  方法:行程问题的主要思想就是数形结合的思想,在做题时画个行程图式,可以使思路比较直观,容易抓住一些不变点,从而列出相应的方程,求出一些重要的等量关系,而这些等量关系正是我们解题所需要的。

  行程问题可以分为以下几大类:

  1.相遇问题:

  知识要点提示:甲从A地到B地,乙从B地到A地,然后甲,乙在A,B途中相遇。

  A、B两地的路程=甲的速度×相遇时间+乙的速度×相遇时间

  =(甲的速度+乙的速度)×相遇时间

  =速度和×相遇时间

  出发时间相同:

  例题:

  两列对开的列车相遇,第一列车的车速为10米/秒,第二列车的车速为12.5米/秒,第二列车的旅客发现第一列车在旁边开过时用了6秒,则第一列车的长度为多少米?

  A.60米    B.75米    C.80米    D.135米

  【答案】D.解析:这里A,B两地的距离就为第一列车的长度,那么第一列车的长度为(10+12.5)×6=135米。

  甲、乙二人同时从相距60千米的两地同时相向而行,6小时相遇。如果二人每小时各多行1千米,那么他们相遇的地点距前次相遇点1千米。又知甲的速度比乙的速度快,乙原来的速度为(    )

  A.3千米/时   B.4千米/时   C.5千米/时   D.6千米/时

  【答案】B.解析:原来两人速度和为60÷6=10千米/时,现在两人相遇时间为60÷(10+2)=5小时,设原来乙的速度为X千米/时且乙的速度较慢,则5(X+1)=6X+1,解得X=4.注意:在解决这种问题的时候一定要先判断谁的速度快。

  【答案】D.解析:两人相遇时间要超过2小时,出发130分钟后,甲、乙都休息完2次,甲已经行了4×2=8千米,乙已经行了6×(130-20)÷60=11千米,相关因素去掉后,变成一个简单的相遇问题,相遇还需要(20-8-11)÷(4+6)=0.1小时=6分钟,故两人从出发到第一次相遇用了130+6=136分钟。先大体判断两人的相遇时间,可知道在相遇前两人要休息几次。以所用时间段长的人为基数。

  我们上面讲的都是同时出发的情况。

  出发时间不同:

  每天早上李刚定时离家上班,张大爷定时出家门散步,他们每天都相向而行且准时在途中相遇。有一天李刚因有事提早离家出门,所以他比平时早7分钟与张大爷相遇。已知李刚每分钟行70米,张大爷每分钟行40米,那么这一天李刚比平时早出门(    )分钟

  A.7   B.9   C.10   D.11

  【答案】D.解析:设每天李刚走X分钟,张大爷走Y分钟相遇,李刚今天提前Z分钟离家出门,可列方程为70X+40Y=70×(X+Z-7)+40×(Y-7),解得Z=11,故应选择D.抓住了,两地距离不变,列方程。

  二次相遇问题:

  知识要点提示:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。一般知道AC和AD的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍。

  例题:

  甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。请问A、B两地相距多少千米? A.120       B.100       C.90        D.80 【答案】A.解析:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120.

  两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇。两城市相距(    )千米

  A.200   B.150   C.120   D100

  【答案】D.解析:第一次相遇时两车共走一个全程,第二次相遇时两车共走了两个全程,从A城出发的汽车在第二次相遇时走了52×2=104千米,从B城出发的汽车走了52+44=94千米,故两城间距离为(104+96)÷2=100千米。

  绕圈问题:

  在一个圆形跑道上,甲从A点、乙从B点同时出发反向而行,8分钟后两人相遇,再过6分钟甲到B点,又过10分钟两人再次相遇,则甲环行一周需要(    )?

  A.24分钟    B.26分钟    C.28分钟    D.30分钟

  【答案】C.解析:甲、乙两人从第一次相遇到第二次相遇,用了6+10=16分钟。也就是说,两人16分钟走一圈。从出发到两人第一次相遇用了8分钟,所以两人共走半圈,即从A到B是半圈,甲从A到B用了8+6=14分钟,故甲环行一周需要14×2=28分钟。也是一个倍数关系。

  2.    追及问题

  知识要点提示:有甲,乙同时行走,一个走得快,一个走得慢,当走的慢的走在前,走得快的过一段时间就能追上。这就产生了“追及问题”。实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人都的速度差。如果假设甲走得快,乙走得慢,在相同时间(追及时间)内:

  追及路程=甲走的路程-乙走的路程

  =甲的速度×追及时间-乙的速度×追及时间

  =速度差×追及时间

  核心就是“速度差”的问题。

  一列快车长170米,每秒行23米,一列慢车长130米,每秒行18米。快车从后面追上慢车到超过慢车,共需(    )秒钟

  A.60   B.75   C.50   D.55

  【答案】A.解析:设需要x秒快车超过慢车,则(23-18)x=170+130,得出x=60秒。这里速度差比较明显。

  当然很多问题的都不可能有这么简单,“速度差”隐藏起来了

  甲、乙两地相距100千米,一辆汽车和一台拖拉机都从甲开往乙地,汽车出发时,拖拉机已开出15千米;当汽车到达乙地时,拖拉机距乙地还有10千米。那么汽车是在距乙地多少千米处追上拖拉机的?

  A.60千米   B.50千米   C.40千米   D.30千米

  【答案】C.解析:汽车和拖拉机的速度比为100:(100-15-10)=4:3,设追上时经过了t小时,那么汽车速度为4x,拖拉机速度则为3x,则3xt+15=4xt,即(4x-3x)t=15得出xt=15,既汽车是经过4xt=60千米追上拖拉机,这时汽车距乙地100-60=40千米。这里速度差就被隐藏了。

  环形跑道周长是500米,甲、乙两人按顺时针沿环形跑道同时、同地起跑,甲每分钟跑50米,乙每分钟跑40米,甲、乙两人每跑200米均要停下来休息1分钟,那么甲首次追上乙需要多少分钟?

  A.60         B.36              C.72         D.103

  【答案】C.解析:追上的时间肯定超过50分钟,在经过72分钟后,甲休息了14次并又跑了2分钟,那么甲跑了2900米,乙正好休息了12次 ,知道乙跑了2400米,所以在经过72分钟后甲首次追上乙。

  3. 流水问题

  知识要点提示:我们知道,船顺水航行时,船一方面按自己本身的速度即船速在水面上行进,同时整个水面又按水流动的速度在前进,因此船顺水航行的实际速度(简称顺水速度)就等于船速和水速的和,即:

  顺水速度=船速+水速

  同理:逆水速度=船速-水速

  可推知:船速=(顺水速度+逆水速度)/2;水速=(顺水速度-逆水速度)/2

  一艘轮船从河的上游甲港顺流到达下游的丙港,然后调头逆流向上到达中游的乙港,共用了12小时。已知这条轮船的顺流速度是逆流速度的2倍,水流速度是每小时2千米,从甲港到乙港相距18千米。则甲、丙两港间的距离为(    )

  A.44千米   B.48千米   C.30千米   D.36千米

  【答案】A.解析:顺流速度-逆流速度=2×水流速度,又顺流速度=2×逆流速度,可知顺流速度=4×水流速度=8千米/时,逆流速度=2×水流速度=4千米/时。设甲、丙两港间距离为X千米,可列方程X÷8+(X-18)÷4=12 解得X=44.

  一艘轮船在两码头之间航行。如果顺水航行需8小时,如果逆水航行需11小时。已知水速为每小时3千米,那么两码头之间的距离是多少千米?

  A.180   B.185   C.190   D.176

  【答案】D.解析:设全程为s,那么顺水速度为,逆水速度为,由(顺水速度-逆水速度)/2=水速,知道-=6,得出s=176.

  数学运算主要涉及到以下几个问题:比例问题,不定方程,抽屉问题,倒推法问题,方阵问题,工程问题,和倍差问题,利润问题,年龄问题,牛吃草问题,浓度问题,平均数,数的拆分,数的整除性,速算与巧算,提取公因式法,统筹问题,尾数计算法,行程问题,植树问题,最小公倍数和最大公约数问题等等。以上都是在不断作题过程中总结出来的规律,在复习过程中,分点复习会有条理,不会遗漏,可以使自己的知识形成系统,在以后的作题中思路会更加清晰,下面是有关行程问题的一些总结。

  方法:行程问题的主要思想就是数形结合的思想,在做题时画个行程图式,可以使思路比较直观,容易抓住一些不变点,从而列出相应的方程,求出一些重要的等量关系,而这些等量关系正是我们解题所需要的。

  行程问题可以分为以下几大类:

  1.相遇问题:

  知识要点提示:甲从A地到B地,乙从B地到A地,然后甲,乙在A,B途中相遇。

  A、B两地的路程=甲的速度×相遇时间+乙的速度×相遇时间

  =(甲的速度+乙的速度)×相遇时间

  =速度和×相遇时间

  出发时间相同:

  例题:

  两列对开的列车相遇,第一列车的车速为10米/秒,第二列车的车速为12.5米/秒,第二列车的旅客发现第一列车在旁边开过时用了6秒,则第一列车的长度为多少米?

  A.60米    B.75米    C.80米    D.135米

  【答案】D.解析:这里A,B两地的距离就为第一列车的长度,那么第一列车的长度为(10+12.5)×6=135米。

  甲、乙二人同时从相距60千米的两地同时相向而行,6小时相遇。如果二人每小时各多行1千米,那么他们相遇的地点距前次相遇点1千米。又知甲的速度比乙的速度快,乙原来的速度为(    )

  A.3千米/时   B.4千米/时   C.5千米/时   D.6千米/时

  【答案】B.解析:原来两人速度和为60÷6=10千米/时,现在两人相遇时间为60÷(10+2)=5小时,设原来乙的速度为X千米/时且乙的速度较慢,则5(X+1)=6X+1,解得X=4.注意:在解决这种问题的时候一定要先判断谁的速度快。

  【答案】D.解析:两人相遇时间要超过2小时,出发130分钟后,甲、乙都休息完2次,甲已经行了4×2=8千米,乙已经行了6×(130-20)÷60=11千米,相关因素去掉后,变成一个简单的相遇问题,相遇还需要(20-8-11)÷(4+6)=0.1小时=6分钟,故两人从出发到第一次相遇用了130+6=136分钟。先大体判断两人的相遇时间,可知道在相遇前两人要休息几次。以所用时间段长的人为基数。

  我们上面讲的都是同时出发的情况。

  出发时间不同:

  每天早上李刚定时离家上班,张大爷定时出家门散步,他们每天都相向而行且准时在途中相遇。有一天李刚因有事提早离家出门,所以他比平时早7分钟与张大爷相遇。已知李刚每分钟行70米,张大爷每分钟行40米,那么这一天李刚比平时早出门(    )分钟

  A.7   B.9   C.10   D.11

  【答案】D.解析:设每天李刚走X分钟,张大爷走Y分钟相遇,李刚今天提前Z分钟离家出门,可列方程为70X+40Y=70×(X+Z-7)+40×(Y-7),解得Z=11,故应选择D.抓住了,两地距离不变,列方程。

  二次相遇问题:

  知识要点提示:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。一般知道AC和AD的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍。

  例题:

  甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇。请问A、B两地相距多少千米? A.120       B.100       C.90        D.80 【答案】A.解析:设两地相距x千米,由题可知,第一次相遇两车共走了x,第二次相遇两车共走了2x,由于速度不变,所以,第一次相遇到第二次相遇走的路程分别为第一次相遇的二倍,即54×2=x-54+42,得出x=120.

  两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇。两城市相距(    )千米

  A.200   B.150   C.120   D100

  【答案】D.解析:第一次相遇时两车共走一个全程,第二次相遇时两车共走了两个全程,从A城出发的汽车在第二次相遇时走了52×2=104千米,从B城出发的汽车走了52+44=94千米,故两城间距离为(104+96)÷2=100千米。

  绕圈问题:

  在一个圆形跑道上,甲从A点、乙从B点同时出发反向而行,8分钟后两人相遇,再过6分钟甲到B点,又过10分钟两人再次相遇,则甲环行一周需要(    )?

  A.24分钟    B.26分钟    C.28分钟    D.30分钟

  【答案】C.解析:甲、乙两人从第一次相遇到第二次相遇,用了6+10=16分钟。也就是说,两人16分钟走一圈。从出发到两人第一次相遇用了8分钟,所以两人共走半圈,即从A到B是半圈,甲从A到B用了8+6=14分钟,故甲环行一周需要14×2=28分钟。也是一个倍数关系。

  2.追及问题

  知识要点提示:有甲,乙同时行走,一个走得快,一个走得慢,当走的慢的走在前,走得快的过一段时间就能追上。这就产生了“追及问题”。实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人都的速度差。如果假设甲走得快,乙走得慢,在相同时间(追及时间)内:

  追及路程=甲走的路程-乙走的路程

  =甲的速度×追及时间-乙的速度×追及时间

  =速度差×追及时间

  核心就是“速度差”的问题。

  一列快车长170米,每秒行23米,一列慢车长130米,每秒行18米。快车从后面追上慢车到超过慢车,共需(    )秒钟

  A.60   B.75   C.50   D.55

  【答案】A.解析:设需要x秒快车超过慢车,则(23-18)x=170+130,得出x=60秒。这里速度差比较明显。

  当然很多问题的都不可能有这么简单,“速度差”隐藏起来了

  甲、乙两地相距100千米,一辆汽车和一台拖拉机都从甲开往乙地,汽车出发时,拖拉机已开出15千米;当汽车到达乙地时,拖拉机距乙地还有10千米。那么汽车是在距乙地多少千米处追上拖拉机的?

  A.60千米   B.50千米   C.40千米   D.30千米

  【答案】C.解析:汽车和拖拉机的速度比为100:(100-15-10)=4:3,设追上时经过了t小时,那么汽车速度为4x,拖拉机速度则为3x,则3xt+15=4xt,即(4x-3x)t=15得出xt=15,既汽车是经过4xt=60千米追上拖拉机,这时汽车距乙地100-60=40千米。这里速度差就被隐藏了。

  环形跑道周长是500米,甲、乙两人按顺时针沿环形跑道同时、同地起跑,甲每分钟跑50米,乙每分钟跑40米,甲、乙两人每跑200米均要停下来休息1分钟,那么甲首次追上乙需要多少分钟?

  A.60         B.36              C.72         D.103

  【答案】C.解析:追上的时间肯定超过50分钟,在经过72分钟后,甲休息了14次并又跑了2分钟,那么甲跑了2900米,乙正好休息了12次 ,知道乙跑了2400米,所以在经过72分钟后甲首次追上乙。

  3.流水问题

  知识要点提示:我们知道,船顺水航行时,船一方面按自己本身的速度即船速在水面上行进,同时整个水面又按水流动的速度在前进,因此船顺水航行的实际速度(简称顺水速度)就等于船速和水速的和,即:

  顺水速度=船速+水速

  同理:逆水速度=船速-水速

  可推知:船速=(顺水速度+逆水速度)/2;水速=(顺水速度-逆水速度)/2

  一艘轮船从河的上游甲港顺流到达下游的丙港,然后调头逆流向上到达中游的乙港,共用了12小时。已知这条轮船的顺流速度是逆流速度的2倍,水流速度是每小时2千米,从甲港到乙港相距18千米。则甲、丙两港间的距离为(    )

  A.44千米   B.48千米   C.30千米   D.36千米

  【答案】A.解析:顺流速度-逆流速度=2×水流速度,又顺流速度=2×逆流速度,可知顺流速度=4×水流速度=8千米/时,逆流速度=2×水流速度=4千米/时。设甲、丙两港间距离为X千米,可列方程X÷8+(X-18)÷4=12 解得X=44.

  一艘轮船在两码头之间航行。如果顺水航行需8小时,如果逆水航行需11小时。已知水速为每小时3千米,那么两码头之间的距离是多少千米?

  A.180   B.185   C.190   D.176

  【答案】D.解析:设全程为s,那么顺水速度为,逆水速度为,由(顺水速度-逆水速度)/2=水速,知道-=6,得出s=176.


相关热词搜索:公务员 备考 数学 运算 复习

网校辅导推荐

版权声明
  1、凡本网注明 “来源:中华会计网校”的所有作品,版权均属中华会计网校所有,未经本网授权不得转载、链接、转贴或以其他方式使用;已经本网授权的,应在授权范围内使用,且必须注明“来源:中华会计网校”。违反上述声明者,本网将追究其法律责任。
  2、本网部分资料为网上搜集转载,均尽力标明作者和出处。对于本网刊载作品涉及版权等问题的,请作者与本网站联系,本网站核实确认后会尽快予以处理。
  本网转载之作品,并不意味着认同该作品的观点或真实性。如其他媒体、网站或个人转载使用,请与著作权人联系,并自负法律责任。
  3、本网站欢迎积极投稿
  4、联系方式:
编辑信箱:tougao@chinaacc.com
电话:010-82319999-2110