职业培训教育网

2017年国家公务员考试网上辅导火爆热招中
报名、查分信息【免费】短信提醒服务
职业培训教育网荣获“十大网络教育机构”
高清课件、手机移动课堂全新体验
您的位置:职业培训教育网  > 公务员 > 公务员学习资料 > 公务员行测 > 公务员数量关系 正文

08年公务员考试指导:十大数字推理规律详解

2007-11-30 16:32  来源:       我要纠错 | 打印 | 收藏 | | |

  备考规律一:等差数列及其变式

  【例题】7,11,15,( )

  A 19 B 20 C 22 D 25

  【答案】A选项

  【广州新东方戴斌解析】这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间也满足此规律,那么在此基础上对未知的一项进行推理,即15+4=19,第四项应该是19,即答案为A.

  (一)等差数列的变形一:

  【例题】7,11,16,22,( )

  A.28 B.29 C.32 D.33

  【答案】B选项

  【广州新东方戴斌解析】这是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是5;第四个与第三个数字之间的差值是6.假设第五个与第四个数字之间的差值是X,

  我们发现数值之间的差值分别为4,5,6,X.很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=7,则第五个数为22+7=29.即答案为B选项。

  (二)等差数列的变形二:

  【例题】7,11,13,14,( )

  A.15 B.14.5 C.16 D.17

  【答案】B选项

  【广州新东方戴斌解析】这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是2;第四个与第三个数字之间的差值是1.假设第五个与第四个数字之间的差值是X.

  我们发现数值之间的差值分别为4,2,1,X.很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=0.5,则第五个数为14+0.5=14.5.即答案为B选项。

  (三)等差数列的变形三:

  【例题】7,11,6,12,( )

  A.5 B.4 C.16 D.15

  【答案】A选项

  【广州新东方戴斌解析】这也是一个典型的等差数列的变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是-5;第四个与第三个数字之间的差值是6.假设第五个与第四个数字之间的差值是X.

  我们发现数值之间的差值分别为4,-5,6,X.很明显数值之间的差值形成了一个新的等差数列,但各项之间的正负号是不同,由此可以推出X=-7,则第五个数为12+(-7)=5.即答案为A选项。

  (三)等差数列的变形四:

  【例题】7,11,16,10,3,11,( )

  A.20 B.8 C.18 D.15 【答案】A选项

  【广州新东方戴斌解析】这也是最后一种典型的等差数列的变形,这是目前为止难度最大的一种变形,即后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号每“相隔两项”进行交叉变换的规律。题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个与第二个数字之间的差值是5;第四个与第三个数字之间的差值是-6,第五个与第四个数字之间的差值是-7.第六个与第五个数字之间的差值是8,假设第七个与第六个数字之间的差值是X.

  总结一下我们发现数值之间的差值分别为4,5,-6,-7,8,X.很明显数值之间的差值形成了一个新的等差数列,但各项之间每“相隔两项”的正负号是不同的,由此可以推出X=9,则第七个数为11+9=20.即答案为A选项。

  备考规律二:等比数列及其变式

  【例题】4,8,16,32,( )

  A.64 B.68 C.48 D.54 【答案】A选项

  【广州新东方戴斌解析】这是一个典型的等比数列,即“后面的数字”除以“前面数字”所得的值等于一个常数。题中第二个数字为8,第一个数字为4,“后面的数字”是“前面数字”的2倍,观察得知第三个与第二个数字之间,第四和第三个数字之间,后项也是前项的2倍。那么在此基础上,我们对未知的一项进行推理,即32×2=64,第五项应该是64.

  (一)等比数列的变形一:

  【例题】4,8,24,96,( )

  A.480 B.168 C.48 D.120 【答案】A选项

  【广州新东方戴斌解析】这是一个典型的等比数列的变形,即后面的数字与前面数字之间的倍数是存在一定的规律的。题中第二个数字为8,第一个数字为4,“后项”与“前项”的倍数为2,由观察得知第三个与第二个数字之间“后项”与“前项”的倍数为3;第四个与第三个数字之间“后项”与“前项”的倍数为4.假设第五个与第四个数字之间“后项”与“前项”的倍数为X.

  我们发现“倍数”分别为2,3,4,X.很明显“倍数”之间形成了一个新的等差数列,由此可以推出X=5,则第五个数为96×5=480.即答案为A选项。

  (二)等比数列的变形二:

  【例题】4,8,32,256,( )

  A.4096 B.1024 C.480 D.512 【答案】A选项

  【广州新东方戴斌解析】这也是一个典型的等比数列的变形,即后面的数字与前面数字之间的倍数是存在一定的规律的。题中第二个数字为8,第一个数字为4,“后项”与“前项”的倍数为2,由观察得知第三个与第二个数字之间“后项”与“前项”的倍数为4;第四个与第三个数字之间“后项”与“前项”的倍数为8.假设第五个与第四个数字之间“后项”与“前项”的倍数为X.

  我们发现“倍数”分别为2,4,8,X.很明显“倍数”之间形成了一个新的等比数列,由此可以推出X=16,则第五个数为256×16=4096.即答案为A选项。

  (三)等比数列的变形三:

  【例题】2,6,54,1428,( )

  A.118098 B.77112 C.2856 D.4284 【答案】A选项

  【广州新东方戴斌解析】这也是一个典型的等比数列的变形,即后面的数字与前面数字之间的倍数是存在一定的规律的。题中第二个数字为6,第一个数字为2,“后项”与“前项”的倍数为3,由观察得知第三个与第二个数字之间“后项”与“前项”的倍数为9;第四个与第三个数字之间“后项”与“前项”的倍数为27.假设第五个与第四个数字之间“后项”与“前项”的倍数为X

  我们发现“倍数”分别为3,9,27,X.很明显“倍数”之间形成了一个新的平方数列,规律为3的一次方,3的二次方,3的三次方,则我们可以推出X为3的四次方即81,由此可以推出第五个数为1428×81=118098.即答案为A选项。

  (四)等比数列的变形四:

  【例题】2,-4,-12,48,( )

  A.240 B.-192 C.96 D.-240 【答案】A选项

  【广州新东方戴斌解析】这也是一个典型的等比数列的变形,即后面的数字与前面数字之间的倍数是存在一定的规律的。题中第二个数字为-4,第一个数字为2,“后项”与“前项”的倍数为-2,由观察得知第三个与第二个数字之间“后项”与“前项”的倍数为3;第四个与第三个数字之间“后项”与“前项”的倍数为-4.假设第五个与第四个数字之间“后项”与“前项”的倍数为X

  我们发现“倍数”分别为-2,3,-4,X.很明显“倍数”之间形成了一个新的等差数列,但他们之间的正负号是交叉错位的,由此戴老师认为我们可以推出X=5,即第五个数为48×5=240,即答案为A选项。

  备考规律三:求和相加式的数列

  规律点拨:在国考中经常看到有“第一项与第二项相加等于第三项”这种规律的数列,以下戴老师和大家一起来探讨该类型的数列

  【例题】56,63,119,182,()

  A.301 B.245 C.63 D.364 【答案】A选项

  【广州新东方戴斌解析】这也是一个典型的求和相加式的数列,即“第一项与第二项相加等于第三项”,我们看题目中的第一项是56,第二项是63,两者相加等于第三项119.同理,第二项63与第三项119相加等于第182,则我们可以推敲第五项数字等于第三项119与第四项182相加的和,即第五项等于301,所以A选项正确。

  备考规律四:求积相乘式的数列

  规律点拨:在国考及地方公考中也经常看到有“第一项与第二项相乘等于第三项”这种规律的数列,以下戴老师和大家一起来探讨该类型的数列

  【例题】3,6,18,108,()

  A.1944 B.648 C.648 D.198 【答案】A选项

  【广州新东方戴斌解析】这是一个典型的求积相乘式的数列,即“第一项与第二项相加等于第三项”,我们看题目中的第一项是3,第二项是6,两者相乘等于第三项18.同理,第二项6与第三项18相乘等于第108,则我们可以推敲第五项数字等于第三项18与第四项108相乘的积,即第五项等于1944,所以A选项正确。

  备考规律五:求商相除式数列

  规律点拨:在国考及地方公考中也经常看到有“第一项除以第二项等于第三项”这种规律的数列,以下戴老师和大家一起来探讨该类型的数列

  【例题】800,40,20,2,()

  A.10 B.2 C.1 D.4 【答案】A选项

  【广州新东方戴斌解析】这是一个典型的求商相除式的数列,即“第一项除以第二项等于第三项”,我们看题目中的第一项是800,第二项是40,第一项除以第二项等于第三项20.同理,第二项40除以第三项20等于第四项2,则我们可以推敲第五项数字等于第三项20除以第四项2,即第五项等于10,所以A选项正确。


相关热词搜索:08年 公务员 数字 推理

  上一篇:  

  下一篇:  

网校辅导推荐

版权声明
  1、凡本网注明 “来源:中华会计网校”的所有作品,版权均属中华会计网校所有,未经本网授权不得转载、链接、转贴或以其他方式使用;已经本网授权的,应在授权范围内使用,且必须注明“来源:中华会计网校”。违反上述声明者,本网将追究其法律责任。
  2、本网部分资料为网上搜集转载,均尽力标明作者和出处。对于本网刊载作品涉及版权等问题的,请作者与本网站联系,本网站核实确认后会尽快予以处理。
  本网转载之作品,并不意味着认同该作品的观点或真实性。如其他媒体、网站或个人转载使用,请与著作权人联系,并自负法律责任。
  3、本网站欢迎积极投稿
  4、联系方式:
编辑信箱:tougao@chinaacc.com
电话:010-82319999-2110